高能量密度物理

高能量密度物理中心介绍


首席科学家


赵永正 正教授,Y. C. Francis Thio, Full Professor
通讯地址 Office Address:

电子邮件 Email:zhaoyongzheng@shanghaitech.edu.cn


Professor Y. C. Francis Thio (赵永正教授) is a theoretical, computational and experimental physicist, who has worked in the areas of high energy density physics, fusion, plasma, space propulsion, electromagnetic launchers, ballistics, and geophysics. He is a current leader of the research in plasma-jet driven magneto-inertial fusion (PJMIF). He has taught physics and mathematics at all levels, and mentored a number of undergraduate, graduate students and researchers.


研究介绍 



High energy density physics (HEDP) is an important subfield of contemporary physics. Magneto-inertial fusion (MIF), a hybridization of magnetic and inertial fusion, is a major application of magnetized high energy density physics (MHEDP), and a representative modern innovative fusion pathway. In view of the significant progress made in magneto-inertial fusion in recent years, ShanghaiTech University is establishing a new High Energy Density Physics (HEDP) Laboratory. The Laboratory plans to pursue the cutting-edge and challenging research opportunities at the frontiers of magneto-inertial fusion as a pathway towards compact, commercializable fusion power. Fusion energy development is a formidable challenge, and we welcome collaborations from all over the world in working towards this very challenging, but very important goal for the benefit of all humankind. If commercialization of fusion energy can be realized in a timely fashion, it can be an important component in an energy mix to mitigate the effects of climate change, which otherwise is posing an existential threat to our civilization.


Stage 1 Recruitment for the Laboratory has begun. We are seeking outstanding talents in the relevant areas of science and technology to join our team. Stage 1 Recruitment Plan includes seven Research Faculty Positions for Experimental Physicists (4 positions), Electrical Engineer (1), Mechanical Engineer (1), Computational Physicist (1), with a total of seven or more Postdoctoral Fellows and technicians to support the Research Faculty. We are accepting applications immediately, and applications are being reviewed as soon as they are received, and positions are being filled until all positions are filled.


Recruitment is focused on scientists and engineers interested in working together as a team towards the very ambitious scientific goals of the Laboratory while also promoting their scientific and engineering careers. Accomplishing the research objectives of the Laboratory requires the development of advanced theoretical models, computer codes, advanced plasma guns, a variety of plasma diagnostics to measure plasma temperatures, densities and pressures, high-speed imaging of plasmas, high-speed multi-channel data acquisition systems, computer-based programmable control systems, the application of high-current, pulsed power and high-speed switching technologies, vacuum techniques and systems, merging of hypersonic plasma jets, laser and particle beam interactions with plasma, liner implosions, generation of compact toroids (spheromaks, field reversed configurations) by ?-pinch and/or Rotating Magnetic Field (RMF), etc.


Eligibility:


Basic requirements:
1. A Ph.D. or its equivalent gained from actual working experience in a relevant field with a track record of accomplishments evidenced by publications in peer-review journals and/or documentable and verifiable accomplishments.
2. For Research Associate Professorship, at least 5 years as an Assistant Professor
3. For Research Assistant Professorship, at least 2 years as a postdoctoral fellow
Desirable qualities:
1. Highly self-motivated, diligent and conscientious, deeply dedicated to scientific research, with a cooperative team spirit.
2. Possess excellent communication skills.
3. Knowledge, expertise and actual working experience in any scientific and engineering areas listed in the section (Positions Descriptions) above.



代表性论文



Main References:

[1] Y. C. Francis Thio, Scott C. Hsu, F. Douglas Witherspoon, Edward Cruz, Andrew Case, Samuel Langendorf, Kevin Yates, John Dunn, Jason Cassibry, Roman Samulyak, Peter Stoltz, Samuel J. Brockington, Ajoke Williams, Marco Luna, Robert Becker & Adam Cook (2019): Plasma-Jet-Driven Magneto-Inertial Fusion, Fusion Science and Technology, DOI: 10.1080/15361055.2019.1598736.

[2] Y. C. Francis Thio et al., Plasma-Jet-Driven Magneto-Inertial Fusion, paper presented at the First International Conference in Innovative Fusion Approaches, Xi’an, Shaanxi, China, May 26-28, 2019.

[3] Chenguang Li and Xianjun Yang, Modeling and numerical analysis of a magneto-inertial fusion concept with the target created through FRC merging, Physics of Plasmas 23, 102702 (2016); doi: 10.1063/1.4964367.

[4] Xianjun Yang and Y. C. Francis Thio, 磁惯性约束聚变实现点火, report presented to ShanghaiTech University, September 18, 2019.


Primers, Tutorials, and Reviews for PJMIF:


  1. Y. C. Francis Thio, Scott C. Hsu, F. Douglas Witherspoon, Edward Cruz, Andrew Case, Samuel Langendorf, Kevin Yates, John Dunn, Jason Cassibry, Roman Samulyak, Peter Stoltz, Samuel J. Brockington, Ajoke Williams, Marco Luna, Robert Becker & Adam Cook (2019): Plasma-Jet-Driven Magneto-Inertial Fusion, Fusion Science and Technology, DOI: 10.1080/15361055.2019.1598736.

  2. Y. C. Francis Thio et al., Plasma-Jet-Driven Magneto-Inertial Fusion, paper presented at the First International Conference in Innovative Fusion Approaches, Xi’an, Shaanxi, China, May 26-28, 2019.

  3. Y. C. F. Thio and F. D. Witherspoon, “Entrepreneurial Opportunities in Fusion Energy Development,” Open Access Government, November 16, 2017, https://www.openaccessgovernment.org/entrepreneurial-opportunities-fusion-energy-development/39604/

  4. Y. C. F. Thio et al., “Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers,” in Current Trends in International Fusion Research – Proc. 2nd International Symposium (NRC Canada, Ottawa, 1999), p. 113.

  5. Y. C. F. Thio et al., “A Physics Exploratory Experiment on Plasma Liner Formation,” J. Fusion Energy 20, 1 (2002).

  6. Y. C. F. Thio, “Status of the U.S. program in magneto-inertial fusion,” J. Phys. Conf. Ser. 112, 042084 (2008).

  7. S. C. Hsu et al., “Spherically Imploding Plasma Liners as a Standoff Driver for Magnetoinertial Fusion,” IEEE Trans. Plasma Sci. 40, 1287 (2012).

  8. F. D. Witherspoon et al., “A contoured gap coaxial plasma gun with injected plasma armature,” Rev. Sci. Instrum. 80, 083506 (2009).

  9. C. E. Knapp and R. C. Kirkpatrick, “Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept,” Phys. Plasmas 21, 070701 (2014).

  10. ARPA-E’s program on Accelerating Low-Cost Plasma Heating and Assembly (ALPHA), http://arpa-e.energy.gov/?q=arpa-e-programs/alpha.


MIF Tutorials and Primers:

  1. I. R. Lindemuth and R. C. Kirkpatrick, “Parameter space for magnetized fuel targets in inertial con?nement fusion,Nucl. Fusion, vol. 23, p. 263, 1983.

  2. R. C. Kirkpatrick, I. R. Lindemuth, and M. S. Ward, “Magnetized target fusion: An overview,” Fusion Tech., vol. 27, p. 201, 1995.

  3. M.M. Basko, A.J. Kemp, J. Meyer-ter-Vehn, “Ignition conditions for magnetized target fusion in cylindrical geometry,”Nuclear Fusion, Vol. 40, No. 1, p. 59 (2000).

  4. Y. C. F. Thio, “Status of the U.S. program in magneto-inertial fusion,” J. Phys. Conf. Ser. 112, 042084 (2008).

  5. Y. C. Francis Thio, “Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields,” Paper presented at IFSA 2007, Kobe, Japan. http://www.osti.gov/scitech/biblio/1159661. Full-length version of Y. C. F. Thio, “Status of the U.S. program in magneto-inertial fusion,” J. Phys. Conf. Ser. 112, 042084 (2008).

  6. Irvin R. Lindemuth, The Ignition Design Space of Magnetized Target Fusion, Phys. Plasmas, accepted for publication, published online December 14, 2015.

  7. Lindemuth, I. R. and Siemon, R. E. The fundamental parameter space of controlled thermonuclear fusion. Am. J. Phys. 77, 407, 2009.


 PJMIF Primers

  1. Thio, Y. C. F., Panarella, E., Kirkpatrick, R. C., Knapp, C. E., Wysocki, F., Parks, P. and Schmidt, G., “Magnetized target fusion in a spheroidal geometry with standoff drivers,” In: Proc. of the Second Int. Symp. on Current Trends in Int. Fusion Research, (ed. E. Panarella). Ottawa: National Research Council of Canada, p. 113, 1999.

  2. Thio, Y. C. F., Knapp, C. E., Kirkpatrick, R. C., Siemon, R. E. and Turchi, P. J., “A physics exploratory experiment on plasma liner formation,” J. Fusion Energy, 20, 1, 2001.

  3. Y. C. F. Thio, B. Freeze, R. C. Kirkpatrick, B. Landrum, H. Gerrish, G. R. Schmidt, “High-energy space propulsion based on magnetized target fusion,” AIAA Paper 99-2703, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Los Angeles, California, 20-24 June, 1999.

  4. S. J. Langendorf and S. C. Hsu, “Semi-analytic model of plasma-jetdrivenmagneto-inertialfusion,” Phys. Plasmas, vol. 24, p. 032704, 2017.

  5. Hsu, S. C., T. J. Awe, S. Brockington, A. Case, J. T. Cassibry, G. Kagan, S. J. Messer, M. Stanic, X. Tang, D. R. Welch, and F. D. Witherspoon, “Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion,” IEEE Trans. Plasma Sci. 40, 1287, 2012

  6. Knapp, C. E. and Kirkpatrick, R. C., “Possible energy gain for a plasma-liner-driven magnetoinertial fusion concept,” Phys. Plasmas21, 070701, 2014

  7. Hsu, S. C., “Technical summary of the first U.S. plasma jet workshop,” J. Fusion Energy28, 246.

  8. R. B. Adams, G. Stratham, S. White, B. Patton, Y. C. F. Thio, J. Santarius, R. Alexander, S. Fincher, T. Polsgrove, J. Chapman, A. Phillips. Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems. NASA Technical Report 2004, NASA Marshall Space Flight Center, Huntsville, Alabama, USA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030062121.pdf


  1. S. C. Hsu, “Plasma Liners and the Potential for a Standoff Fusion Reactor” and F. D. Witherspoon, “Plasma Jet Drivers for Magneto-Inertial Fusion (PJMIF),” talks given at the ARPA-E workshop on Drivers for Economical Fusion Technologies, Oct. 29–30, 2013, Berkeley, CA; download talks at http://arpa-e.energy.gov/?q=arpa-e-events/drivers-economical-fusion-technologies-workshop.

  2. P. McGrath, Spherically Imploding Plasma Liners as a Standoff Magneto-Inertial-Fusion Driver, ARPA-E, May 2014, http://arpa-e.energy.gov/?q=slick-sheet-project/plasma-liners-fusion

Primers for plasma guns as drivers for PJMIF

  1. Y. C. Francis Thio, Jason T. Cassibry, Thomas E. Markusic, “Pulsed Electromagnetic Acceleration of Plasmas,” Paper AIAA-2002-3803, 38th AIAA Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, July 7-10, 2002.

  2. J. T. Cassibry, Y. C. F. Thio, and S. T. Wu, “Two-dimensional axisymmetric magnetohydrodynamic analysis of blow-by in a coaxial plasma accelerator,” Phys. Plasmas, vol. 13, p. 053101, 2006.

  3. Y.C.F. Thio, R. Eskridge, M. Lee, J. Smith, A. Martin, T. E. Markusic, J. T. Cassibry, “An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator,” AIAA-2002-4269, 38th AIAA Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, July 7-10, 2002.

  4. Witherspoon, F. D., Case, A., Messer, S. J., Bomgardner, II, R., Phillips, M. W., Brockington, S. and Elton, R., “A contoured gap coaxial plasma gun with injected plasma armature,” Rev. Sci. Instrum. 80, 083506, 2009.

  5. F. D. Witherspoon, S. Brockington, A. Case, S. J. Messer, L. Wu, R. Elton, S. C. Hsu, J. T. Cassibry, and M. A. Gilmore, “Development of MiniRailguns for the Plasma Liner Experiment,” Bull. Amer. Phys. Soc., vol. 56, p. 311, 2011.

  6. S. Brockington, A. Case, S. Messer, L. Wu, and F. D. Witherspoon, “The HyperV 8000 ?g, 50 km/s plasma railgun for PLX,” Bull. Amer. Phys. Soc., vol. 57, p. 134, 2012.

  7. S. C. Hsu, E. C. Merritt, A. L. Moser, T. J. Awe, S. J. E. Brockington, J. S. Davis, C. S. Adams, A. Case, J. T. Cassibry, J. P. Dunn, M. A. Gilmore, A. G. Lynn, S. J. Messer, and F. D. Witherspoon, “Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications,” Phys. Plasmas, 19, 123514, 2012.

PJMIF Experimental Papers

  1. S. C. Hsu, A. L. Moser, E. C. Merritt, C. S. Adams, J. P. Dunn, S. Brockington, A. Case, M. Gilmore, A. G. Lynn, S. J. Messer, and F. D. Witherspoon, “Laboratory plasma physics experiments using supersonic plasma jets,” J. Plasma Physics,81, 345810201 (2015).

  2. Merritt, E. C., Moser, A. L., Hsu, S. C., Adams, C. S., Dunn, J. P., Holgado, A. M. and Gilmore, M. “Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets,” Phys. Plasmas,21, 055703, 2014. 

  3. S. Messer, A. Case, L. Wu, S. Brockington, and F. D. Witherspoon, “Nonlinear compressions in merging plasma jets,” Phys. Plasmas, 20, 032306 (2013). 

  4. Case A., S. Messer, S. Brockington, L. Wu, F. D. Witherspoon,1 and R. Elton, “Merging of high speed argon plasma jets,” Phys. Plasmas, 20, 012704 (2013) 

  5. Li, C. K. et al., “Structure and dynamics of colliding plasma jets,” Phys. Rev. Lett. 111, 235003, 2013. 

  6. Merritt, E. C., Lynn, A. G., Gilmore, M. A., Thoma, C., Loverich, J. and Hsu, S. C. “Multi-chord fiber-coupled interferometry of supersonic plasma jets,” Rev. Sci. Instrum. 83, 10D523, 2012.

  7. Merritt, E. C., Moser, A. L., Hsu, S. C., Loverich, J. and Gilmore, M., “Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets,” Phys. Rev. Lett., 111, 085003, 2013 

  8. Merritt, E. C., Lynn, A. G., Gilmore, M. A. and Hsu, S. C. “Multi-chord fiber-coupled interferometer with a long coherence length laser,” Rev. Sci. Instrum, 83, 033506, 2012. 

  9. Liu, W. and Hsu, S. C., “Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma,” Nucl. Fusion, 51, 073026, 2011.

  10. Lynn, A. G., Merritt, E., Gilmore, M., Hsu, S. C., Witherspoon, F. D. and Cassibry, J. T., “Diagnostics for the plasma liner experiment,” Rev. Sci. Instrum. 81, 10E115, 2010. 

  11. I. N. Bogatu, S. A. Galkin, J. S. Kim, Y. C. F. Thio, “Hyper-Velocity Fullerene-Dusty Plasma Jets for Disruption Mitigation,” J. Fusion Energy, 2014.

  12. A. L. Moser and S. C. Hsu, “Experimental characterization of a transition from collisionless to collisional interaction between head-on merging supersonic plasma jets,” Phys. Plasmas, vol. 22, p. 055707, 2015.

  13. C. S. Adams, A. L. Moser, and S. C. Hsu, “Observation of RayleighTaylor-instability evolution in a plasma with magnetic and viscous effects,” Phys. Rev. E, vol. 92, p. 051101(R), 2015.

  14. S. C. Hsu, S. J. Langendorf, K. C. Yates, J. P. Dunn, S. Brockington, A. Case, E. Cruz, F. D. Witherspoon, M. A. Gilmore, J. T. Cassibry, R. Samulyak, P. Stoltz, K. Schillo, W. Shih, K. Beckwith, and Y. C. F. Thio, “Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner,” (Submitted for publication, September, 2017). 

PJMIF Modeling Papers

  1. Knapp, C. E. and Kirkpatrick, R. C., “Possible energy gain for a plasma-liner-driven magnetoinertial fusion concept,” Phys. Plasmas, 21, 070701, 2014

  2. J. T. Cassibry, R. J. Cortez, S. C. Hsu, and F. D. Witherspoon, “Estimates of con?nement time and energy gain for plasma liner driven magnetoinertial fusion using an analytic self-similar converging shock model,” Phys. Plasmas, vol. 16, p. 112707, 2009.

  3. T. J. Awe, C. S. Adams, J. S. Davis, D. S. Hanna, S. C. Hsu, and J. T. Cassibry, “One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners”, Physics of Plasmas, 18, 072705 (2011)

  4. J. T. Cassibry, M. Stanic, S.C. Hsu, F.D. Witherspoon and S. I. Abarzhi, ”Tendency of spherically imploding liners formed by merging plasma jets to evolve toward spherical symmetry,” Phys. Plasmas, 19, 052702 (2012); doi: 10.1063/1.4714606 

  5. Cassibry, J. T., Stanic, M. and Hsu, S. C., “Ideal hydrodynamic scaling relations for a stagnated imploding spherical plasma liner formed by an array of merging plasma jets,” Phys. Plasmas20, 032706, 2013

  6. Davis, J. S., Hsu, S. C., Golovkin, I. E., MacFarlane, J. J. and Cassibry, J. T. One dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling. Phys. Plasmas 19, 102701, 2012 

  7. C. Thoma, D. R. Welch, R. E. Clark, N. Bruner,1 J. J. MacFarlane, and I. E. Golovkin. Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state, Phys. Plasmas 18, 103507 (2011)

  8. Santarius, J. F. Compression of a spherically symmetric deuterium-tritium plasma liner onto a magnetized deuterium-tritium target. Phys. Plasmas 19, 072705, 2012

  9. H. Kim, L. Zhang, R. Samulyak, and P. Parks, “On the structure of plasma liners for plasma jet induced magnetoinertial fusion,” Phys. Plasmas, vol. 20, p. 022704, 2013. 

  10. H. Kim, R. Samulyak, L. Zhang, and P. Parks, “Influence of atomic processes on the implosion of plasma liners,” Phys. Plasma19, 082711 (2012). 

  11. G. Kagan, X. Tang, S. C. Hsu, and T. J. Awe, “Bounce-free spherical hydrodynamic implosion,” Phys. Plasmas 18, 120702 (2011). 

  12. R. Samulyak, P. Parks, and L. Wu, “Spherically symmetric simulation of plasma liner driven magnetoinertial fusion,” Phys. Plasmas, vol. 17, p. 092702, 2010. 10.1063/1.3481461 

  13. J. Cassibry, R. J. Cortez, S. C. Hsu, and F. D. Witherspoon, “Estimates of confinement time and energy gain for plasma liner driven magneto-inertial fusion using an analytic self-similar converging shock model,” Phys. Plasmas 16, 112707 (2009) 

  14. P. B. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression, Phys. Plasmas 15, 062506, 2008.

  15. J. T. Cassibry, Y. C. Francis Thio, T. E. Markusic, S. T. Wu, Numerical Modeling of a Pulsed Electromagnetic Thruster Experiment, J. Propulsion and Power, 22, p. 628, 2006.

  16. J. Loverich and A. Hakim, “Two-dimensional modeling of ideal merging plasma jets,” J. Fusion Energy, vol. 29, p. 532, 2010.

  17. J. T. Cassibry, R. Cortez, C. Cody, S. Thompson, and L. Jackson, “Three dimensional modeling of pulsed fusion for propulsion and terrestrial power using smooth particle ?uid with maxwell equation solver (SPFMaX), in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, 2017, https://doi.org/10.2514/6.2017-4677.

  18. R. Samulyak, J. Du, J. Glimm, and Z. Xu, “A numerical algorithm for MHD of free surface ?ows at low magnetic Reynolds numbers,” J. Comp. Phys., vol. 226, p. 1532, 2007.

  19. J. J. MacFarlane, I. E. Golovkin, and P. R. Woodruff, “HELIOS-CR – a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling,” J. Quant. Spect. Rad. Transfer, vol. 99, p. 381, 2006. [40] J. J. MacFarlane, “VISRAD–A 3-D view factor code and design tool for high energy density physics experiments,” J. Quant. Spect. Rad. Transfer, vol. 81, p. 287, 2003.

  20. K. Beckwith, S. A. Veitzer, S. McCormick, J. Ruge, L. N. Olson, and J. C. Cahoun, “Fully implicit ultrascale physics solvers and application to ion source modeling,” IEEE Trans. Plasma Sci., vol. 43, p. 957, 2015.

Beat-Wave Current Drive

  1. D. R. Welch, T. C. Genoni, C. Thoma, N. Bruner, D. V. Rose, and S. C. Hsu, “Simulations of Magnetic Field Generation in Unmagnetized Plasmas via Beat-Wave Current Drive,” Phys. Rev. Lett. 109, 225002 (2012).

  2. D. R. Welch, T. C. Genoni, C. Thoma, D. V. Rose, and S. C. Hsu. Particle-in-cell simulations of laser beat-wave magnetization of dense Plasmas, Phys. Plasmas 21, 032704 (2014)

  3. Ghizzo, P. Bertrand, M. Shoucri, T. W. Johnston, E. Fijalkow', M.R. Feix, V.V. Demchenko, Study of laser-plasma beat wave current drive with an eulerian vlasov code, p. 45 – 65, Nuclear Fusion, vo1.32, no.1 (1992).

  4. J. H. Rogers and D. Q. Hwang, Measurements of Beat-Wave-Accelerated Electrons in a Toroidal Plasma, PRL 68 (26), p. 3877, 1992.

  5. P. Bertrand, A. Ghizzo, T. W. Johnston, M. Shouri, E. Fijalkow and M. R. Feix, A nonperiodic Euler-Vlasov code for the numerical simulation of laser-plasma beat wave acceleration and Raman scattering, p. 1028, Phys. Fluids B, 2 (5), 1990.




返回原图
/

XML 地图 | Sitemap 地图